8 research outputs found

    A First-Principles Investigation on the Structural, Optoelectronic, and Thermoelectric Properties of Pyrochlore Oxides (La2Tm2O7 (Tm = Hf, Zr)) for Energy Applications

    No full text
    A first-principles calculation based on DFT investigations on the structural, optoelectronic, and thermoelectric characteristics of the newly designed pyrochlore oxides La2Tm2O7 (Tm = Hf, Zr) is presented in this study. The main quest of the researchers working in the field of renewable energy is to manufacture suitable materials for commercial applications such as thermoelectric and optoelectronic devices. From the calculated structural properties, it is evident that La2Hf2O7 is more stable compared to La2Zr2O7. La2Hf2O7 and La2Zr2O7 are direct bandgap materials having energy bandgaps of 4.45 and 4.40 eV, respectively. No evidence regarding magnetic moment is obtained from the spectra of TDOS, as a similar overall profile for both spin channels can be noted. In the spectra of ε2(ω), it is evident that these materials absorb maximum photons in the UV region and are potential candidates for photovoltaic device applications. La2Tm2O7 (Tm = Hf, Zr) are also promising candidates for thermoelectric device applications, as these p-type materials possess ZT values of approximately 1, which is the primary criterion for efficient thermoelectric materials

    A First-Principles Investigation on the Structural, Optoelectronic, and Thermoelectric Properties of Pyrochlore Oxides (La<sub>2</sub>Tm<sub>2</sub>O<sub>7</sub> (Tm = Hf, Zr)) for Energy Applications

    No full text
    A first-principles calculation based on DFT investigations on the structural, optoelectronic, and thermoelectric characteristics of the newly designed pyrochlore oxides La2Tm2O7 (Tm = Hf, Zr) is presented in this study. The main quest of the researchers working in the field of renewable energy is to manufacture suitable materials for commercial applications such as thermoelectric and optoelectronic devices. From the calculated structural properties, it is evident that La2Hf2O7 is more stable compared to La2Zr2O7. La2Hf2O7 and La2Zr2O7 are direct bandgap materials having energy bandgaps of 4.45 and 4.40 eV, respectively. No evidence regarding magnetic moment is obtained from the spectra of TDOS, as a similar overall profile for both spin channels can be noted. In the spectra of ε2(ω), it is evident that these materials absorb maximum photons in the UV region and are potential candidates for photovoltaic device applications. La2Tm2O7 (Tm = Hf, Zr) are also promising candidates for thermoelectric device applications, as these p-type materials possess ZT values of approximately 1, which is the primary criterion for efficient thermoelectric materials

    Spin-Dependent First-Principles Study on Optoelectronic Properties of Neodymium Zirconates Pyrochlores Nd<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> in Fd-3m and Pmma Phases

    No full text
    Rare-earth zirconate pyrochlores (RE2Zr2O7) are of much fundamental and technological interest as optoelectronic, scintillator and thermal barrier coating materials. For the first time, we report the detailed optoelectronic properties of rare-earth zirconates Nd2Zr2O7 in both, i.e., for spin up and spin down states, via the use of first-principles density functional theory (DFT) procedure. To obtain the desired optoelectronic properties, we used a highly accurate method called full-potential linearized augmented plane wave (FPLAPW) within the generalized gradient approximation (GGA), parametrized with Hubbard potential U as an exchange-correlation function. The band gaps predicted for Nd2Zr2O7 were of the order 2.4 eV and 2.5 eV in Fd-3m and Pmma symmetrical phases, respectively. For both the phases, our research involved a complete examination of the optical properties of Nd2Zr2O7, including extinction coefficient, absorption coefficient, energy loss, function, reflectivity, refractive index, and real optical conductivity, analyzed in the spectral range from 0.0 eV to 14 eV. The calculated optical properties in both phases showed a considerable spin-dependent effect. The electronic bonding characteristics of different species in Nd2Zr2O7 within the two crystal symmetries were explored via the density distribution mapping of charge

    Effects of compressed strain on thermoelectric properties of Cu3SbSe4

    No full text
    Nedávný zvýšený zájem o Cu3SbSe4 kvůli bohatému potenciálu pro rozsáhlé termoelektrické aplikace. Chcete-li získat úplné předpovědi jeho termoelektrických vlastností a údajů o transportu náboje, je důležité mít k dispozici základní údaje o struktuře pásma. V současné práci jsme provedli komplexní vyšetřování vlastností elektrického transportu Cu3SbSe4 pomocí výpočtů výpočtu struktury DFT v kombinaci s Boltzmannovou dopravní teorií. Nově 0, 2, 4 a 6% kmenového Cu3SbSe4 materiálu v rámci DFT hustota funkční teorie). Nejprve jsou diskutovány vlastnosti elektronické struktury sypkého materiálu (LAO) a pak jsou popsány účinky různých stupňů napětí na elektronické a termoelektrické vlastnosti. Provedli jsme úplný postup relaxace atomové struktury a zjistili jsme, že odchylka je o méně než 1 - 5% z experimentálních dat. Disperze struktury pásma a hustota stavů (celkem a částečně) jsou prezentovány. Byly diskutovány termoelektrické vlastnosti (jako je Seebeckův koeficient, elektrická vodivost, tepelná vodivost, výkonový faktor (PF) a teplota. Nejvyšší dosažený faktor účinnosti byl rovný asi 6,5 až 7,0 x 1011 W / mK2 při 850 K. Tento výsledek naznačuje, že dopování p-typu může zvýšit termoelektrické vlastnosti 0, 2, 4 a 6% kmenových materiálů Cu3SbSe4 při vysoké teplotě rozsah. Naše výsledky dokládají přiměřené dohody s předchozími výsledky a předpovídají velký potenciál pro zvýšení termoelektrického výkonu Cu3SbSe4.Recently Cu3SbSe4 have attracted enhanced an interest due to abundant potential for extensive thermoelectric applications. To get a complete prediction of its thermoelectric performance and charge transport details it is important to have fundamental data concerning band structure. In the present work we have conducted comprehensive investigations of the electrical transport properties of Cu3SbSe4 using first-principles DFT band structure calculations combined with the Boltzmann transport theory.The novel 0, 2, 4 and 6% strain Cu3SbSe4 material within the frame of DFT (density functional theory) approach have been explored. First of all the electronic structure properties of the bulk material (LAO) are discussed and then the effects of different degree of strain on the electronic and thermoelectric properties are discussed.We have carried out full relaxation procedure of the atomic structure and found that a deviation by less than 1-5% from experimental data. The band structure dispersion and densityof states (total and partial) are presented. The thermoelectric properties (like Seebeck coefficient, electrical conductivity, thermal conductivity, power factor (PF) and Figure of Merit (ZT) have been discussed) versus temperature. The highest power factor obtained was equal to about 6.5~7.0×1011 W/mK2s at 850 K. This result suggests that p-type doping can enhance the thermoelectric properties of 0, 2, 4 and 6% strain Cu3SbSe4 materials in the high temperature range. Our results demonstrates a reasonable agreements with the previous results and predict the great potential for enhancement of the thermoelectric performance of Cu3SbSe4

    Prvoprincipielních popis různých fází v Li2NH sloučeniny: elektronové struktury a optických vlastností

    No full text
    A hydrogen storage material can also be used as a potential and effective solid reducing agent in addition to its applications as an important energy carrier. The density function theory has been used to find the structural and optoelectronic properties of the Li2NH compound. The exchangecorrelation functional based GGA (generalized gradient approximation) is applied for calculating structural and optoelectronic properties. The expression for the formation is used to identify the stability, which is further confirmed by calculating the structural properties of Li2NH. The calculations of the band structure show that a direct band gap is present between the occupied Li and N orbitals. A deep analysis of the optical properties was performed under incident photon radiation at energies up to 14 eV. Our calculated refractive index n(0) and the static part of the dielectric constant ε2(0) are analogous to the experimental and other reported theoretical value

    Optoelectronic properties of Nd3+ doped CaTa2O6: Insights from the GGA plus U calculations

    No full text
    The current work is a study of optoelectronic properties of Nd3+ doped CaTa2O6 using the FP-LAPW (full potential-linear augmented plane wave) method as implemented within the WIEN-2k code. The GGA (generalized gradient approximation) has been used as E-XC (exchange-correlation) functional for the calculations of electronic and optical properties with Hubbard correction. The optimized crystal structure shows close agreement with experimental results. In order to ensure the accuracy of the electronic band structure and optoelectronic properties, we have used the effective Hubbard parameter "U" for the 4f-electrons of the Nd atom. Electronic band structure study shows the semiconducting nature with a direct band gap. The VBM (valance band maximum) and CBM (conduction band minimum) are located at the Gamma-point of the Brillouin zone. Optical properties were studied by taking into account the interband transitions. A number of optical transition levels have been found. We have evaluated various optical constants, like the absorption coefficient, reflectivity, energy loss function and refractive index as function of incident photon energy. Both band structure and optical parameters have been investigated for up and down electron spin configurations. Nd3+ doped CaTa2O6 possesses high degree of spin symmetry, except at low energy, and absorbs ultraviolet photons strongly and weakly reflects photons in the infrared and visible energies. These optical characteristics can be useful for optoelectronic device applications

    Vliv S a Se výměně na elektronických a termoelektrických vlastností BaCu2GeQ4 (Q = S, Se) chalkogenidových krystalů

    No full text
    Pro kvartérního chalkogenidy BaCu2GeQ4 (Q = S, Se), optoelektronických, strukturální a transportní vlastnosti jsou zkoumány pomocí přesné všechny elektrony FPeLAPW metoda [plný potenciál linearizován rozšířený rovinné vlny]. Mřížkové konstanty vypočtené teoreticky jsou stanovena tak, aby v dobré shodě s hodnotami, které jsou měřeny experimentálně. Je zjištěno, že všechny Titulní sloučeniny jsou přímé polovodiče zakázaným pásem, a tato energie odstupu pásma se nachází G-G symetrie bodů. Současně se při výměně S pomocí SE zakázaný pás velikost se snižuje. Optické konstanty disperze jako imaginární a reálné složky dielektrických funkcí, extinkčních koeficientů, indexu lomu, odrazivost je, absorpčních koeficientů, které byly také vypočteny pro tyto sloučeniny. Vysoká absorpce a přímé charakteristiky zakázaným pásem těchto sloučenin v UVeVisible energetickém rozsahu ukazují, že tyto perovskytové struktury by mohly být použity v optoelektronických a optických přístrojů pracujících v UV eVisible rozsahu energetického spektra. Vypočtený dvojlom (0,012 a 0,083) zvyšuje vhodnost BaCu2GeSe4 srovnání s BaCu2GeS4 obvykle aplikuje jako nelineární optické materiály. Vypočtené dopravy koeficienty vykazují anizotropní charakter materiálů, po dohodě s jejich elektronových stavů. Transportní vlastnosti ukazují silnější koncentrace nosiče podél Ge-s, Ba-P a Cu-d orbitalů, což potvrzuje, že tyto orbitaly jsou hlavní pro elektrické dopravní funkce. Hodnoty efektivní hmotnosti elektronů jsou vypočteny podle zakřivení CBM pásma 124 a 184 pro BaCu2GeS4 a BaCu2GeSe4 resp. Zkoumání termoelektrického účiníku ukazuje, že BaCu2GeS4 je mnohem lepší než BaCu2GeSe4 v celém teplotním intervalu, který dělat to vhodný pro budoucí technologické aplikaceFor the Quaternary Chalcogenides BaCu2GeQ4 (Q ¼ S, Se) optoelectronic, structural and transport properties are explored using accurate all electrons FPeLAPW [full potential linearized augmented plane wave] method. The lattice constants calculated theoretically are established to be in fine agreement with the values that are measured experimentally. It is established that all the titled compounds are direct band gap semiconductors and this energy band gap is situated G- G symmetry points. At the same time the band gap magnitude decreases during replacement of S by Se. Optical constant dispersion like imaginary and real components of dielectric functions, extinction coefficients, refractive indices, reflectivity's, absorption coefficients, have been also calculated for these compounds. High absorption and the direct band gap characteristics of these compounds in the UV-Visible energy range indicate that these perovskite structures might be used in optoelectronic and optical devices working in the UV-Visible range of the energy spectrum. The calculated birefringence (0.012 and 0.083) enhances the suitability of BaCu2GeSe4 compared to BaCu2GeS4 usually applied as nonlinear optical materials. The computed transport coefficients exhibit the anisotropic nature of the materials, in agreement with their electronic states. The transport properties show stronger carrier concentrations along the Ge-s, Ba-p and Cu-d orbitals, confirming that these orbitals are principal for the electrical transport features. The values of effective mass of electrons are computed by curvature of the CBM band 124 and 184 for BaCu2GeS4 and BaCu2GeSe4 respectively. Investigating of the thermoelectric power factor shows that BaCu2GeS4 is much better than BaCu2GeSe4 over the entire temperature interval which make it suitable for future technological application
    corecore